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E Abstract

For high dimensionah or nonlinear problems there are serious limita-
tions on the power of-avjilable computational methods for the optimiza-
tion or parametric optimiization of stochastic systems of diffusion type.
The paper develops an eftective Monte Carlo method for obtaining good
estimators of systems sembitivities with respect to system parameters,
when the system is of interdst over a long period of time. The value of the
method is borne out by numerical experiments, and the computational
requirements are favorable with respect to competing methods when the
dimension is high or the nonlinearities ‘severe’. The method is a type ¢

Cz/"denvatxve of likelihood ratio™ method. For a wide class of problems; the
cost function or dynamics need not be smooth in the state variables; for.

example where the cost is the probability of an event or mgn’f functions
appear in the dynamics. Under appropriate conditions, it is shown that
the invariant measures are differentiable with respect to the parameters.
Since the basic diffusion (or other) model cannot be simulated exactly,
simulatable approximations are discussed in detail, and estimators of the
derivatives of the cost functions for these approximations are obtained
and analyzed. It is shown that these estimators and their expectations
converge to those for the original problem.-Thugs, we prove a robustness
result for the sensitivity estimators, namely that tlmm of the
ergodic cost functions (and their estimators) for the simulatable approxi-—
mations converge to those for the approximated process. Such results are
essential if a simulation based method is to be used with confidence:
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1. Introduction

This paper is concerned with a key question in the use of recursive Monte
Carlo methods for system optimization, when the system operation and cost are
of interest for a long period of time. For many control systems, the control is
given a-priori in a parametrized form and for the use of Monte Carlo methods for
the optimization of the parameter, one needs good estimators of the derivatives
of the cost function with respect to the parameter.

Reference [1] develops a very useful method for doing this, when the system
is of the diffusion or related type, and the control interval of concern is finite.
Numerical approximations to the unbiased estimators were developed and an-
alyzed, and simulations showed that the method can be superior to competing
methods if the system dimension is large or the system nonlinear. In this paper,
the results of [1] are extended to the ergodic cost problem. New difficulties arise,
since we need essentially to deal with derivatives of the invariant measures with
respect to the control parameters and with the convergence of suitable com-
putable approximations. Owing to these “ergodic” problems, the assumptions
are stronger here than in [1).

Let z(-) be defined by the diffusion
(1.1) dz = b(z,a)dt + o(z)dw, r€ R,

where a(z) = o(z)o’(z) is non-degenerate and o« is a control parameter to be
chosen. For each a of interest, let z(-) have a unique invariant measure p(o).
Precise conditions will be given below. For ‘smooth cost rate’ k(-). define the

“ergodic cost”

(1.2) (u(a), k(e)) = /p(d.r,a)k(z:,a) = k(a).




We wish to get an unbiased estimator of dk(a)/da (as well as reasonable ‘nu-
merical’ approximations from sample simulations) at selected values of a. Such
estimators are necessary if we wish to minimize k(a) over a by some recursive
Monte Carlo (stochastic approximation) method.

Control problems are frequently of this type; i.e., the control is given in a
parametric form. Often, a full optimal feedback control is not desired since
it might be very hard to implement and all the state variables are not avail-
able. But a good class of parametrized controls might be known. See [1] for
some examples and further motivation, as well as a discussion of alternative
approaches.

Generally, one cannot easily evaluate k(a) or its derivatives. Then one might
seek a method for getting good estimators which can be used in a recursive
Monte Carlo optimization method. The ease of getting the estimates and their
quality are key issues in such an approach. The estimators are to be obtained
by simulations of (1.1) or of approximations to (1.1), since the solution of (1.1)
can not be known exactly.

Reference {1] developed a general “likelihood ratio derivative” based method
for getting such estimators, under conditions which are much broader than those
used in this paper, but for a ‘finite time’ problem. The numerical data in [1],
and that obtained subsequently, show that the method can be quite superior
to its competitors for non-linear and high dimensional systems. The quality of
the estimator is judged by the “variance per CPU time required.” The reader is
referred to [1] for more motivation and examples. The ergodic cost problem is
harder and requires stronger (hence, the non-degeneracy) conditions. Actually,

the method has been successfully tested on many degenerate problems of the




type used in [1]. so that the conditions which our analysis requires can undoubt-
edly be weakened. There are ready extensions to the jump-diffusion, reflection
and other standard models. In order to introduce the idea, we give a brief infor-
mal review of one idea in {1}, but using our slightly different terminology, and
under stronger conditions than used in [1}.

For given T < oo, define the “finite time” costs

T
C(:v:,a):/o k(z(s), a)ds + ko(z(T), o),

C(z,a) = E2C(z,a),

where E2 denotes the expectation with parameter o and z(0) = z. We always
use ag to denote the point at which the derivative is to be taken. With no loss
of generality a will be a real number, since for the vector case we can estimate
the derivative for each component separately. Let PZ(T) denote the measure
induced by the solution to (1.1) with the initial condition z(0) = z, on C"[0,T],
the space of R"-valued continuous functions on [0, 7], with the sup norm. Let
b(z,a),k(z,a) and ko(z,a) be a-differentiable and define « = ag + §a and
8b(z,a9,60) = bz, a0 + 6a) — b(z, ap). Define

T
f(O,T;ao,éa)z/o [0™1(2(5))6b(z(s), @o. b)) du(s)

T
-3 | 1o e(0)8(a(6), a0 b,

and the Radon-Nikodym derivative

dpPgette(T)

(13) dPZ°(T)

=exp&(0,T;ap, ba).

Define Z(-} by

T
(14)  2Z(T.a0) = /0 (0= (2(5))ba(2(s), a0)) du(s)




T
= /o (L (z(s), @o)a~1 (z(s))][dz(s) — b(z(s), ap)ds].

We use the subscripted b,{z, ag), etc., to denote the a-derivatives at ag. Then

the quantities

T
(1.5) Q(ao) = / [k(2(s), a0) Z(s, o) + ka(z(s), axo)]ds

+ ko(z(T), ag) Z(T, o) + ko,a(z(T), @),

T
(15)  Qlao) = /0 [(k(2(s), a0) = k(z(s), a0))Z(s, @) + ka(2(s), a0)]ds

+ (*o(z(T), a0) — ko(z(T), @0)) Z(T, ax0) + ko,a(z(T), o),

where we use

k(z(s),a¢) = E2ok(z(s), aq),

are unbiased estimators of Ca(z,a0). Thus, if a path of z(-) is available, one
can calculate or approximate (1.5) or (1.5).

In order to avoid the very time consuming task of evaluating (from the
simulations) k(z(s), ao) for each s < T, in (1.5'), we usually use k(z(T’), o) in
place of k(z(s), ag), and with good results.

Generally, paths of the true model z(-) are not available, and one can only
approximate via a numerical method (say, a discrete time approximation). Ref-
erence [1] discusses two basic classes of such approximations and proves that
the estimators obtained from them are good. Getting good estimators is more
difficult for the ergodic problem, since we also need to truncate the infinite time
interval and approximate (at least implicitly) derivatives of invariant measures,

a non-trivial problem.




The proofs use a representation of the invariant measure of the diffusion
process in terms of that of an imbedded Markov chain, defined by the random
return times to a “recurrence set”, as well as certain Girsanov transformations
defined on these “return intervals”. In order to be sure that these transforma-
tions are well defined, a bound on an exponential moment of the return time is
needed. This is provided by the stability result in Section 2. Section 3 is con-
cerned with ergodic properties of the diffusion model. The imbedded Morkov
chain is defined, and the invariant measure of the diffusion is defined in terms of
this Markov chain, and the needed recurrence (@-recurrence) properties of the
chains are stated. Section 4 is concerned with the existence of the derivative
of the invariant measure of the diffusion with respect to the parameter. The
differentiability is first shown for the invariant measure of the imbcdded chain,
and then this is used to get the result for the diffusion. The differentiability
is in two senses, setwise convergence and weak convergence. Some preliminary
results concerning equicontinuity of certain sets of functions and invertability of
the operator [ — f’(ao) (defined in the section) are first proved. It is also shown
that the derivative of the invariant measure can be well approximated by the
derivative of the transition function for larg~ enough time.

Since the diffusion model is an “ideal” model and the paths can at best be
approximated in some statistical sense, one needs to know that the natural ap-
proximations can be used with confidence in any implementation. Reference [1]
dealt with two types of approximations, a discrete time model and a Markov
chain approximation. Either can be used here, but we restrict our attention
to the first approximation. The model is introduced in Section 5, and some

preliminary sensitivity results are stated there. Some needed stability estimates




(analogous to the estimates of Section 2), uniform in the approximation param-
eter, are obtained in Section 6. The main theoretical results for the approxima-
tions are in Section 7, where, after getting some preliminary results concerning
the rate of convergence of certain quantities to their “invariant means”, it is
shown that the invariant measure of the discrete time approximation is differ-
entiable with respect to the control parameter, that the derivatives converge to
the derivative of the invariant measure of the diffusion, as well as results con-
cerning finite time approximat.ons. The results imply an important robustness
of the derivatives with respect to the model. This is a new result and a very
useful one fro.n the point of view of applications. since otherwise general results
concerning the existence of the derivatives for the ideal model would not have
much practical relevance.

Numerical data is given in Section 8. The basic method of implementation
requires the use of a discrete parameter approximation, over a finite time period.
The period needs to be large enough to capture the “ergodic eflects”. Two
methods are compared; a finite difference method, which has been altered to be
fairly efficient, and several forms of our method. The comparison depends on the
problem, but it is clear that for a large class of nonlinear problems, our method
is preferable. One should note that reasonable examples can be constructed so
that any chosen method works best, so that one needs to keep an open mind in
any application.

The analysis has been restricted to nondegenerate diffusion models, but a
similar analysis can be carried out with various related process, provided only

that ergodic results analogous to those of Section 3 are available.




2. Stability of z(-)

In order to develop the ergodic results and use a Girsanov measure transfor-
mat’ a1 method on random unbounded intervals, suitable stability properties of
z(-) need to be proved. We will use the following assumptions. The parameter

a will be confined to a compact interval Ay with ay in its interior.

A2.1. b(.) and o(") are continuous, o(-) is bounded and 0(z)o’(z) = a(z) >

gol for some eq > 0. For some K < oo, |b(z,0)| < K|zl + K.
A2.2. (1.1) has a unique weak sense solution for each z(0) = r and o € Ayp.

A2.3. There 1s a twice conlinuously differentiable Liapunov function 0 <

V(z) — oc as |z} — oc and €3 > 0 such that
(a) Viz(x) is bounded and continuous,
(b) Vi(z)b(z,a) < —€; < 0 for large |z|, o € Ao,
(¢) limyzjmoo sup [Vi(z)]?/[V7(2)b(z, )] < o,
OVEAO
(d) Trr;].ﬂ—ooo sup |V1'l'(z) a(z)]/|V,f(z)b(z,a)| <2
a€Ap

A2.4. When b(r,a) =0, (1.1) has a unigue weak sense solution for each

z = x(0).
A2.5. There ts a bounded continuous funciion by (-, ag) such that as éa — 0
8b(z, g, ba)/ba — ba(z, ap)
boundedly, and uniformly on each compact z-sel.

Remark on (A2.3). The condition does not seem to be very restrictive. It
holds, in particular, for the linear case 8(z,a) = A(a)z, where A(a) is ‘uniformly

stable’ for a € Ap.




Remark on (A2.2). (A2.4) and the stability Theorem 2.1 imply (A2.2),

but it is useful to isolate it as a separate condition.

Theorem 2.1. Assume (A2.1)-(A2.3). There is a compact set Q which is
the closure of its interior such that for each compact Q) D Q and 7, defined by
71 = min{t:z(¥) € Q}, we have for small p >0
(2.1) sup sup EZexppr < oo.

agAy TEQL-Q
Proof. Let £ denote the differential generator of z(-): Lf(z) = fL(z)b(z,a)+

%trace frz(2) - a(z). Then

Le?V'#) = pe?V () [V!(2)b(z, a)

+ ptrace(V.(z)V/(z)) - a(z)/2 + trace V. (z) - a(z)/2].

Let Q be large enough and p small enough such that for z ¢ Q (use (A2.3)) and

some A > 0,

(2.2) Le?V(®) < _prepV (@),

It then foliows that for small p and z ¢ Q

(2.3) LlererV ] <.

From (2.3), Ito’s Lemma and a stopping time argument it follows that
(2.4) E2e*™ < E2errmierV(3(m)) < opV(T)

for small p and r = £(0) € @, which vields the result. Q.E.D.

Corollary. Assume (A2.1)-(A2.3). Let Q and Q, be as in the theorem.
Define T to be the first return time of z(-) to Q afler hitting Q;. Then, for




small p> 0

(2.5) sup sup Egfe’” < oo.
a€cAo T€IQ

The proof follows from the theorem and the non-degeneracy and is omitted.




3. Ergodic Properties of (1.1)

By (A2.1)-(A2.3) and Theorem 2.1, for each a € Ay, z(-) is a recurrent
strong Feller process. Let P(z,t,A | a) denote the transition function. By (2],
[3], there is a unique invariant measure p{a) with u(R", o) and
P(z,t,Al a) 4 p#(A,a) as t — oo, for each Borel A. For t > 0, P(z,t,- | a)
has a bounded and nowhere zero density with respect to Lebesgue measure and
so does p(a).

We next state a representation of p(a) first used by Khazminskii (2] and
which is very useful for analysis. The representation is useful largely because
it is hard to work with ergodic problems and to deal with questions concerning
convergence to invariant measures when the state space is unbounded.

Let Gy D G be compact sets, each of which is connected and is the closure
of its interior. Denote the boundaries by I'y and T, resp., and let G be strictly

interior to G;. Let T and T'; be differentiable. Define the stopping times:

7 = inf{t:z(t) € T}
n = inf{t:z(¢) € T'},

i =inf{t > n:2(t) € I1}.
For n > 1,

n=inf{t > 7, _,;:z(1) € T},

T, = inf{t > m:z(t) € 1 }.

For z = 2(0) € T, we use 7 to denote r, — 7, = 15, the canonical “return” time

toTl.

10




By Theorem 2.1, for small p > 0,

3.1 sup EZ7 < oo, sup EZe’” < oo.
rel'a€ Ao z€l,a€ Ao

Let a € Ag. Define the process X, = z(7,). By [2) and (A2.1)~(A2.3), {X,}
is a recurrent homogeneous Markov chain on I'. Let f’(z,n,- | @) denote its
transition probability. It has a unique invariant measure fi(a).

The chain is also defined for initial condition z = Xy € G. Even though
X, €T, for n > 1, it will be useful to use G as the state space in Section 6 and
afterwards in order to unify the notation with that for the approximations. The
results up to Section 5 hold with this change.

Define 7(A) = fOT I4(z(s))ds for Borel sets A. Then we can write [2,3]

(3.2) u(A, a) = B(A, o) /A(R", a),
where
A(A.0) = /r A(dz,a)E2T(A).

Hence, for bounded measurable f(-), we have the representation

00 wen- ERggELge

Equation (3.3) and various approximations to it will be widely used in the sequel.

Properties of {X,}. The chain {X,)} on state space I' is said to be uni-
formly ¢-recurrent (for a given measure ¢ on the Borel sets cf T') if for each

Borel B € T with ¢(B) >0
Po{X;€B, somei<m}—1 asm— oc;

uniformly in = € T. A sufficient condition {4, p. 29] is that if ¢(B) > 0, 3n < oc,

€ > 0 (which can be B-dependent) such that

(3.4) P2{X;€ B, somei<n)>¢ allz €.

11




If the chain is ¢-recurrent and a-periodic then 3C < o0, ¥ < 1 such that for

Borel sets B

(3.5) |P#{Xn € B) - i(B,a)| < CY",
and for bounded measurable f(.),

(3.6) |EZf(Xn) ~ £ < 2Cy"(|f = f°II,

where [|f]| = sup [f(z)] and fo = (a(a), f).

The next theorem follows from (3, p. 339, proof of Theorem 5.1 there]. The
model in the reference does not explicitly include a parameter a, but it is easily
seen from the proof of the cited theorem that the non-degeneracy and the fact
that the moment bounds in Theorem 2.1 do not depend on & € Ag implies that
(3.4) is uniform in o € Ag for some € > 0. In fact, we can use n = 1. Actually,

we will only need the result for a = aq.

Theorem 3.1. Assume (A2.1)~(A2.3). {Xp} is ¢-recurrent, where ¢ is
Lebesgue measure on T. The recurrence is uniform in a € Ag in the sense that
the mean recurrence limes are bounded uniformly for a € Ag. There are C < oo,

5 < 1 (not depending on o € Ag) such that (3.5) and (3.6) hold.

It will be seen below (Lemma 4.1) that P(x,n,B | @) is continuous in z,
uniformly in a, B. (The continuity is proved in the above reference (3], but we
give a different proof since the details to be used will be needed elsewhere in

the paper.)

12




4. The o-Derivative of ji(a) (Setwise sense)

Let C(T) denote the set of bounded and continucus functions on T, and
C.(T) the centered functions: f; € C(T) if fy = f — f for f € C(T'), where
f =< fi(ao), f >. In order to prove the differentiability of u(a) at ag, we first

prove that of ji(a), and then use (3.3).

Definition. ji(a) is said to be differentiable at g in the setwise (or weak)

sense if there is a finite signed measure v such that for each Borel set B

v(B) = 6ET0[ﬂ(B,ao + 6a) — i(B,ap)] /ba.

f(a) is said to be differentiable at ag in the sense of weak convergence (or weak®

sense) if there is a finite signed measure v such that for each f € C(T),
(v,f) = 6ETO(I1(OO + éa) — j(ao), f)/ba.

Definition. Let L>(T') denote the bounded Borel measurable functions on
I'. For any Borel set H, let B(H) denote the Borel subsets of H. Define the
operator P(a) on L®(T') by P(a)f(z) = E2f(Xy).

Lemma 4.1. Assume (A2.1)-(A2.4). Then the set {P(a)L®(T), a € A}

(restricted 1o functions with ||f]| < 1) is equicontinuous.

Proof. Define the process y() by y(0) = z and
(4.1) dy = o(y)du.
Define

&) = [ o7 s o)) du(s) - 3 [ lo~ (usNMy(s), lds.

13




Given € > 0, there are T, > 71 > Tp > 0 such that forall @« € Ag and z € T,

(4.2) P{r2T}<e, PI{r<T}<e

(43) E: expfg(To,Tl) = 1.

(4.4) sup EZexp2£8(0,T1) < K < o0,
z€l,a€ Ao

(4.5) EY?exp€8(0,To) -1 < e.

Let 1o = (r AT3) VTy. By (4.2), we have

|EZ f(X1) — EZ f(z(m2)] < 4ellfl-
Write
EZ f(z(m12)) = EZEgp f(2(m12)) = EZ f1(2(Th)),
where f) is defined in the obvious way and ||f1]| < ||f||. By use of a Girsanov

measure transformation, (4.4), (4.5) and Schwarz’s inequality, we can write

E; fi(z(Th)) = EZ fi(y(T1)) exp&5 (0, Th)

= EJE) 1y fi(y(Th)) exp &5 (To, Th) + €'

= EZ f2(y(To)) + €',
where [[¢'|| < eK1l|f|l, f2 is defined in the obvious way and ||f2|l < ||f||. Note
that f, depends on a but y(T5) does not.

By the above estimates and arbitrariness of €, we need only show the equicon-

tinuity of the set {EZ fo(y(To)):||f2]l < 1, a € Aq, f2 € L®(T)}. Since y(Tp)
has a bounded density with respect to Lebesgue measure, using characteristic

functions, we can write

B21T0) = g [ ] [ - [ (exp i) B2 exp iwu(Tohiu)}

14




We have
|EZ exp iu'y(To)| < exp ~O(lul?),

where O(-) can be chosen independently of ¢ € T and o € Ay. Also, the
bracketed term is the density (modulo a proportionality factor ((—1,—:-)7)) of y(Ty)
and is bounded by exp —O([y[?), where O(-) can be chosen independently of

z € T and o € Ap. Thus, we need only prove that
E? expiu'y(To)
is z-continuous on each bounded u-set. But this follows from the Feller property

of y(). Q.E.D.

Corollary. Assume (A2.1)-(A2.4). Then the transition function
P(z,n,B|a)= EZIg(X,) is continuous in z, uniformly in B, n and o € Ag.

Also i( B,aq + 8a) — (B, ayg), uniformly in B € B(T).

Proof. The first assertion is a direct consequence of the lemma. Let g €

L>=(T'), llgll < 1. Then, by the invariance of fi(a),
(a(ao + ba),g) = /ﬁ(dz,ao + 6a)E2t2g(X,).

A measure transformation argument and the continuity of &(-) can be used to
show that, as 6a — 0, E2o+eg(X) converges to E2og(X,), uniformly in z € T.
The latter function is continuous on I' by the lemma. In fact the continuity and
the convergence is uniform in g. From this, the invariance of ji(ao) and the

weak convergence fi(ag + 6a) = fi(ag) (see Lemma 4.3 below), we have

Jim (i(ao + 6a),9) = [ A(dz,a0)E2°g(X1)

=/ﬁuamwuy
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where the convergence is uniform in g: |jg|]] <1. Q.E.D.
The next lemma will be used to get the differentiability of u(a) at oy from

that of i(a), via (3.3).

Lemma 4.2, Assume (A2.1)-(A2.5). Then for f € L™(T), as éa — 0
[P(ag + 6a) — P(ao))f /ba

converges (uniformly in z) to the function with values E2° f(X1)Z(7, ag). The

limit is conlinuous and the convergence is uniform for f:||f|| < 1. The sel
{EEOZ(T’ao)f(Xl)a“f” S l)f € Lw(r)’a € AO}

1s equicontinuous. The same result holds for the convergence

%[E:O-{»&a /OT f(z(s))ds — E&° /: f(z(s))ds]

T T
—~ B2 [ fla(6)ds 2(r,a0) = E2° [ f(a(e))2(s.a0)ds.
0 0
Proof. The proof of the last assertion is very similar to that of the prior
assertions and will be omitted. By an argument analogous to that of Lemma
4.1, we can prove the equicontinuity of the cited set of functions. We will prove
only the first assertion of the lemma. For T < oo, via a Girsanov measure

transformation,

Egotée f(z(r AT)) — E2 f(z(r AT))
ba

= E2° f(z(rAT))[exp &(0, T; ag, ba)—1] /b

(4.6) = E2°f(z(r AT))[exp&(0, 7 AT; ap, éa) — 1]/éa.

We have, by (A2.5) and Theorem 2.1,

exp&(0, 1 AT;ap, 6a) — 1
ba

lim lim E‘,’“[

ba—0T=~o0

- Z(r,ao)]z =0,

16




where the limit is attained uniformly in £ € T'. The first assertion of the lemma

follows from this and (4.6). Q.E.D.
The next corollary shows that the setwise derivative of ji(a) at ag is abso-

lutely continuous with respect to ji(ap).

Corollary. Assume (A2.1)-(A2.4). Define the set function ¥ by
#(B) = 1im0ia/p(d:,ao)[ﬁ(z,1,3|ao+5a)-P(z,1,B|a0)].
a- r
Then there is G € L (ji(o)) such that (fi{ao), G) = 0 and

t')(B):/I;ﬂ(dz,ao)G(a:).

The limit is uniform in B.

Proof. By the lemma, the limit is

/Fﬂ(dz:,ao)E;”"Z(T,ao)IB().(l),

and the limit is taken on uniformly in B. (In fact E2°Z(r, ao)Ip(X1) is con-
tinuous, uniformly in B.) Both fi(eo) and the measure defined by the limit
are mutually absolutely continuous with respect to Lebesgue measure, since
the transition probability P(z,1,- | ag) is. Let G denote the Radon-Nikodym
derivative of U with respect to fi(ap). Since E;’°Z(T,ao)IRr(X'1) = 0, we have

{(it(ag),Gy=0. Q.E.D.
Lemma 4.3. Assume (A2.1)-(A2.4). Then ji(ap + ba) = ji(ag).

Proof. The proof follows from the uniqueness of ji(a¢) and the convergence
P(z,1,B | ap + 6a) — P(z,1,B | ap), uniformly for z € T' (Lemma 4.1), and

the details are omitted.
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Definition. Let L(T') C L™=(T) be the ‘centered’ subset for which (i(ag), f) =
0. We identify functions in L (T') which are equal a.e. (Lebesgue measure).
The following lemma is a key result for proving the differentiability of ji(a)

at ag. The representations used occur throughout the sequel.

Lemma 4.4. Assume (A2.1)-(A2.4). Then (I — P(ao)): LL(T) — L(T)

is invertible.

Proof. The fact that P(ag) maps L2(T) into L (T) follows from the fact
that ji(ao) is an invariant measure for the transition function P(z,n,- | ag). We
prove the invertability by simply exhibiting the inverse. Let f € L°(T'). Then
it is easily seen from (3.6) and the definition of (/ — P(ao)) that the “inverse”

defined by

(4.7 (I - Plag) " f(z) = Y PM(a)f(z) = Y E2° f(Xn)

n=0 n=0

satisfies our needs. Q.E.D.

Corollary. Assume (A2.1)-(A2.4). Then (I — P(ag)): C(T) — Co(T) is

invertable.

Proof. By Lemma 4.1, P(a)C.(T') C C.(T). The rest of the proof is as for
the lemma. Q.E.D.

Theorem 4.1. Assume (A2.1)-(A2.5). Then fio(ag) ezists in the sense of

setwise convergence and satisfies, for f € L>(T),

(4.8) (fialao), £) = (@(ao), P2 (o) f) + {fia(e0), P"(a0)f),

where

PHao)f(e) = B2 A(RA,,.
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Proof. For f € L¥(T), we have

(A(a) = j(ao), f) = (i(a), P(a)f) — (ji(@o), P(ao)f)

(4.9) = (@) - (@), P(ao)f) + (A(ao), (P(a) — P(ag))f)
+ (ji(e) = f(ao), (P(a) = P(a0))f).

Write éfi(a) = ji{a) — ji{ao) and §P(a) = P(a) — P(ao). Then, (4.9) yields

(410)  (8(a)/ba, (1 = Plao)f) = (iao), “Heod) + (6(a), Tt ).

By Lemma 4.2 and either Lemma 4.3 or the Corollary to Lemma 4.1, the
second right-hand term in (4.10) goes to zero as §a — 0 (uniformly in f:||f}| <
1).

For g € L®(T), define (use Lemma 4.4), f = (I — P(ap))~!g. By Lemmas
4.2and 44

2201 _ pag) g

converges (uniformly in z) to the function with values

EFf(X1)Z(1,00) = EZ°(Z(r,00) Y Egog(Xa)| 1= i(2).
n=0 y=X,
which is in C.(T'). Hence
(4.11) Jlim (87(a)/6a, ) = (i(a0), ).

Since g € LP(T), and LP(T) = L=(T') modulo constant functions, (4.11) gives
the desired setwise convergence.

The formula (4.8) follows in a similar way. Q.E.D.

Corollary. Assume (A2.1)-(A2.5). Then jio(ag) ezists in the sense of weak

convergence.
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Remark. The corollary is obviously a special case of the theorem. But,
it can be proved directly via the method of proof of the theorem, simply by
replacing all L2(I') by C.(T'). This remark will be useful when working with
the approximations in Section 7, since there we will have to work with weak
convergence only.

Now that the existence of fi,(ap) is established, we can turn our attention

to pq(ao).

Theorem 4.2. Assume (A2.1)-(A2.5). Then p,(aq) ezists in the sense of

selwise convergence, and for f € L(R"),

(Halao), f) = m[‘/;[x(dr,ao)E?/o f(z(8))Z(s,a0)ds

+ [ ratdzooez | f(z(s))ds]

A(ao), f)
(

m[/rﬁ(dx,ao)ﬁ;“/o Z(s‘oo)ds+/rﬁa(d.t,oo)Egr]

(4.12) _ i[fﬂ(dr‘o)E;’ N f(-’t(s))ds]’

" da [ i(dz,a)E2r
Also pol(ag) is absolutely continuous with respect to Lebesgue measure and has

finite variation.

Proof. Let f € L*(R"). Define éu(a) = p(ao + 6a) — pu{ag) and de-
fine §ji(a) analogously. Define the operator P(a) on L®(R") by P(a)f =
E? fOT f(z(s))ds. Let e denote the function which is identically unity. We ncad

to show the differentiability of

(i(a), P(a)f)/(ii(a), P(a)e) = (u(a), f).

It will be sufficient to show the differentiability of the numerator only. This will
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be the first bracketed term in (4.12). We can write

o (@0 + 8a), P(0s +60)f) ~ (i(ac), Plao))]

= () pag)s) + (i), L2080 = Plea)) )
+ (8i(a), E0 L) = Ploo)) )

ba

By Lemma 4.2, the second term on the right converges to the first term in
the first bracket on the right-hand side of (4.12). The first term on the right
converges to the second term in the first bracket on the right-hand side of (4.12)
by Theorem 4.1 and the fact that P(ao)f € C(T). Similarly, the last term on
the right goes to zero. The representation (4.12) implies the absolute continuity
assertion since it equals zero if f = 0 a.e. (Lebesgue measure). It also implies

the finite variation. Q.E.D.

Theorem 4.3 essentially says that the a-derivative of E2 f(z(f)) equals that

of (u(a), f) for large ¢.

Theorem 4.3. Assume (A2.1)-(A2.5). Then for f € L>(R"),

tim = [ utdz,a)E2 £(=(0) =g,
(413) = Jim [ u(dz,00)(E2 S0,

. d '
(1_1215/;1(111.0)1?:%/; f(r(s))dsla___ao

(4.14) = t1_1.'11.10/;z(dr,ao)(E';"’f(;t(t)))a,

and the limits erist.
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Proof. By the differentiability proved in Theorem 4.2 we can write

d—‘i- / pldz,a)f(z) = % / p(dz,0)EZ f(2(1))],a,

(4.15) - / pa(dz, a0) E® f(z(2)) + / u(dz, a0) (B2 f(2 (1)),

As t — oo, E2of(z(t)) — (p(ao), f) for p(ag)-almost all z. Since p,(ao)
is absolutely continuous with respect to Lebesgue measure (Theorem 4.2}, and
u{ap) and Lebesgue measure are mutually absolutely continuous, we have that
pa{ag) is absolutely continuous with respect to u(ag). Also {u,(ag), constant
function) = 0. These facts imply that the first term on the right-hand side of
(4.15) goes to zero as t — oo, which yields the assertion concerning (4.13). The

expression (4.14) is proved in the same way. Q.E.D.
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5. A Discrete Time Approximation

Since the paths of z(:) and w(-) are not physically available, we cannot eval-
uate (1.5) or use Theorem 4.2 or 4.3 as stated to get estimates of the derivatives
< p(ap), f >4 via the use of paths of z(-) or w(:). We need to work with com-
putable approximations to z(-) and w(:). In [1}, two types of approximations
were used for the finite time problem: the first was a discrete time approxi-
mation, and the second a Markov chain approximation. Each one has its own
advantages, but simulation studies indicate that their overall numerical prop-
erties are similar. We will work with the discrete time approximation here. In
this section, the approximation is defined. Some necessary stability results are
proved in the next section. Among other things to be shown, the robustness
properties of approximations to derivatives of invariant measures and ergodic
costs will be clear.

For A > 0 and §uw(nA) = w(nA + A) — w(nA), define {X2} by X& =z

and
(5.1) X2 = X5 + Ab(XE, a0) + o(X2)6w(nA).

Define the interpolation z2(-) to be the piecewise constant (on intervals
[nA,nA+A)) process with z2(nA) = X2. Define Z2(-, ap) to be the piecewise

ccnstant (on intervals [nA,nA + A)) process with value at nA:

n-1
Z%(nA ag) = Z[a"l(/\'?,ao)ba(.\'f,ao)] ‘Sw(iA)
i=0

n-1
= Y [ba(X2 a0)a” (X2)] [6X2 - AB(XE, 00)],

1=0




where X2 = XA, — X2. For T = N/A, [1, Section 4] shows that
N-1
Q%(a0) = ) AK(XZ,20)Z5(rd, a0) + ko(X T, 00)]

n=0

+ koo X5, a0) + ko( XR,a0)Z2(N A, ap)

or the centered form

N-1
Q%(a0) = Y AlK(XR4,) — EZPK(X 2, a0)) 24 (nA, a0) + ka( X2, o))

n=0

+ koo X8, a0) + (ko(X§, a0) — k5"°)Z3(N A, ag)

are appropriate approximations to (1.5). The QA(ao) will have the smaller
variance.
In fact we have
R d T
E20Q(a0) = E2°Q(an) = 72 B2 [ K (o) a)ds + ko(z*(T),0)]
da Y az=ag

and we have the weak convergence

(ZA('vaO)rQA(QO)v QA(00)7IA(')) = (Z('vGO)» Q(Qo), Q(O’O), 1‘())

We will obtain various ‘infinite time’ extensions of this result in Section 7.
Analogous to the comment below (1.5), to reduce computation while ex-
ploiting the (variance reduction) advantages of the centering, in the simulations

we replace E2°k(X2,aq) by E2°k(X 8, aq), with good results in general.
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6. Stability of The Approximation

An analog of Theorem 2.1 is needed for the {X2} process. We will require

the following additional condition

A6.1.

(a) Vi(z)b(z,a) = —00 as |z| — oo, uniformly for a € A,.

o Ve (@)b(z, )]
(b) lllzr'n_.lgfalenjo bz a)F > 0.

Theorem 6.1. Assume (A2.1)-(A2.3) and (A6.1). There is a compact set

Q such that for each compact Q; D Q, we have for smallp > 0, § > 0, and
A<,

(6.1) sup sup EZexppr® < oo,
a€Ay TEQ~Q
where 74 = min{t: z2(t) € Q}.
Proof. Let X& = z. For some K, < 00, we have
A= E2 exp plV(XE) - V(2)
< B2 expplV}(2)(K(z,0)A + o(2)8w0) + Ko(l6w]? + b(z. a)[?A%)].
iTote that for 2rkA < 1,
E exp k|6w|* < 1/(1 — 2rkA).
Thus, for small p, A and k; > 0,1/k; + 1/ky = 1, Holder’s inequality yields
EZ exp p[V, (2)o(2)6w + Ko|sw|?]

1

< [exp K P AV, (z)a(2) Vi () /2] 11 - TNt
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Thus, for small p, A and &, fixed near unity,
A £ exp plV, (z)b(z, @) A + Kolb(z, o)|?A?

+%pAV,I(:c)a(:c)V,(z) +4rKoAl.

Thus, there is a compact set Q and €; > 0 such that for small p and for z ¢ Q,

A < exp—2pe; A. Thus for small p and z ¢ Q,
E2 exp pAc; - exp pV(XB) < exp pV (z).

Hence

EZ exppe;m® - exp pV (22(72)) < exp pV(2),

which yields the result, as in Theorem 2.1. Q.E.D.
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7. Ergodic Properties of {X2}

We now set up the machinery so that results analogous to those in Sections
4 and 5 and the limits as A — 0 can be obtained. Define I', G, I'; and G as in

Section 3. Define the stopping times:

2 = inf{t:22(t) ¢ G, - 1},

2 = inf{t:22(t) € G},

2 =inf{t > r2:28(t) ¢ G, - T}
For n > 1,

A = inf{t > 52 : 22(1) € G}
' = inf{t > r2:2%(t) ¢ G, - I'1}.

For r = xA(O) € G, we use 72 to denote rl,A - rlA

= 78, the canonical return
time to G.
By Theorem 6.1, there are G, G, such that (e.g., lct G equal the set Q of

Theorem 6.1)

(7.1) sup E2r8 < o, sup EZexppr® < oo,
z€G,a€ A0 €G,a€Ao

for small p. Define X2 = 2z2(r2). For a € Ay, the process {X2, n > 0}
is a homogeneous positive recurrent Markov chain with state space G. Let
PA(z,n,- | a) denote the transition function. There is a unique invariant mea-

sure i®(a). Analogously to the situation in Section 3, define the following:

TA
r8(A) = / I4(z2(s))ds, A = Borel set in R",
0
pAve) = [ (s 0)E278 ()
uA(4,0) = 52(A, ) [E5 (R, a).

27




The same argument used to show that p(a) is invariant for z(-) ([2], p. 183) can
be used to show that u®(a) is invariant for {X}, under parameter a. We can

now write for bounded measurable f:

[p B (dz,0)Eg [7” (22 (s))ds
J;a2(dz,a)Egrs ’

(7.2) (#e(a). ) =

Let L°(G) denote the set of bounded Borel measurable functions on G.

Define the operator P2(a) on L®(G) by P2(a)f(z) = E2f(X2), z € G.

Lemma 7.1. Assume (A2.1)-(A2.4) and (A6.1). Then the set {P%(a)L®(G)

(restricted to ||fl| < 1), A > 0, a € Ap} is equicontinuous.

Remark on the proof. Define the process §2(-) to be the piecewise con-
stant interpolation (intervals [nA,nA + A)) of the process defined by Y = z,
YA, = Y2 +0(V,2)6w(nA). Then g2(-) = y(-), defined in Lemma 4.1. Define
the Radon-Nikodym derivative exp Eg’A(O,T), where

T/A-}
£°0.7)= Y [ (FR(F2, )] bu(na)

n=0
T/a-1

— 2 3 TR a)a.
n=0
From this point on, the proof is nearly identical to that of Lemma 4.1 and is
omitted.
Theorem 7.1. Assume (A2.1)-(A2.4) and (A6.1) and let a = ay. Then
X8 = Xi if X& = Xo, and i%(a0) = fi(ao). In addition E2f(Xp) &
E2of(Xi) uniformly in z € G and in f in any equicontinuous set with ||f|| < 1.

Also, i®(ao + 6a) = 1%(ag) and p?(ag) = u(ag). Finally,

feeo = (u4(ao), ) = (wlao), f) = fo°,
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uniformly for f in any equicontinuous set with ||f]| < 1.

Proof. Note that (z2(-),72) — (z(-),7) uniformly in z € G in the sense
that EZoF(z2(-),72) — E2°F(z(-),7) uniformly in z € G, for any bounded
and continuous real valued F(-). The weak convergence X Fal= X (if X8 =
Xo) follows from the uniform integrability of {r4, A > 0, @ € Ao} and the (uni-
form) weak convergence of z2(-) to z(-). The asserted weak convergence can be
proved by a standard martingale method [5], [6] (and using the non-degeneracy
of a(-) and the smoothness of I', T'; to get the weak convergence of 74). In fact,
a standard weak convergence method can be used to get P4(ag)f — P(ao)f,
uniformly in f in any equicontinuous set in C(G).

Now, for f € C(G), by the invariance of u®(ag), we can write

(® (o), f) = (3% (a0), PA(ao)f) = FA0.

{#®(@q), A > 0} is obviously tight since G is compact. If a({ao) is the limit of

a weakly convergent subsequence, then by the last expression, we have

([‘(ao)a-ﬂ = (/}(00)1}3(00).’): f € C(G)y

which yields fi(ag) = fi(e0).

Now use (7.2), the weak convergence {r®,z2(:)} = {r,z(:)} and the uni-
form integrability of {7} (Theorem 6.1) and ji® (o) = () to get u®(ap) =
p(ao). The last assertion of the theorem is also proved by an argument by con-

tradiction and the proof is omitted. Q.E.D.

An analog of (3.6). The following lemma is needed to get an analog of
Lemma 4.4.

Lemma 7.2. Assume (A2.1)-(A2.3) and (A6.1). Let k be such that Cy* =
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A < 1 (see (3.5)). Let C'(G) C C(G) be an equicontinuous set. Then

(7.3) Tace sup |Egof(X2) = foo)
recicy  ||f — fAeol| -

Equivalently, there are y1 < 1, C) < o0, such that for small A > 0,

(7.4) HPA(ao)"f _ fA.ao” <Cwllf - fA’a"“-

Proof. Suppose that (7.3) is false. Then there is 2z, — z € G, A, — 0,
An > Xo > A, fn € C'(G), fa — f € C'(G), such that

ao ¥An) __ fAn,a0
B 1Yy ) S L5
ifn = fa "l

Without loss of generality, we can suppose that the infima of the denomenators

are positive. Then we can write

|E2e f(Xg) = £ S |E2o fo(X2m) — fAnao|
R I T -

B2 f(Xy) = BEo fa(XP) |fo0 = fBn o)

7.5 = = .
(79 l1fa = farmr=ol] fifa = fmell

The last two terms on the right go to zero by the weak convergence X ,‘?" = Xi
(initial conditions X2 = z,, Xo = z, resp.), and #~(ag) = fi{ag), and the
convergence f, — f. The left side of (7.5) goes to |E§°f(/{'k)—f°°|/||f—f°'°ﬂ <
Cy* = X and we have a contradiction.

Inequality (7.4) follows from (7.3) by letting ¥ = (A +6X) for small 61 > 0,

and iterating. Q.E.D.

Lemma 7.3. Assume (A2.1)-(A2.5) and (A6.1). Then for f € L*(G),

[PA(ao + 6a) — PA(ao)lf
Sa
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converges (as éa — 0) to the function P2(ao)f with values
- d -
E3Z%(r%, a0 f(X{) = - EZf(XP) 1m0,

The limit is continuous and the convergence is uniform in Az € G, and in
f € C(G) for |if]l < 1. The set {E2°ZA(r8,aq)f(X2), A >0, f € C(G),
lifll <1} is equicontinuous.

The same result holds for the convergence

% [Egma /Of° f(z2(s))ds — E2° /or‘* f(zA(s))ds]

— E2° /r f(zA(s))ZA(s,ao)ds.
0

The proof is analogous to that of Lemma 4.2 but uses the Radon-Nikodym

derivative introduced in the remark under Lemma 7.1, and is omitted.

Theorem 7.2. Assume (A2.1)-(A2.5) and (A6.1). Then i2(ag) and

u8(ag) erist in the sense of weak convergence.

Proof. Let C2(G) be the subset of C(G) for which (f, i®(ap)) = 0. Fol-
lowing the proof of Lemma 4.4 and its corollary, we first show the invertability
of (I — P2(ap)) on C.(G), on which we identify functions which are equal a.e.
(#®(a0)). By Lemma 7.1 and the fact that i®(ap) is an invariant measure
for the transition function which defines P2 (ayg), for f € CA(G) the sum be-
low converges and we have (I — P4(ag))C2(G) C CA(G). By Lemma 7.2, we
obviously have

(I = P2(a0)) D_(PA(a0)"f = Y_(PA(a0))"(I = PA(a0))f = f.

n=0 n=0

These facts yield that the inverse is

(7.6) g% = (1= P2(a0)™'f = ) _(P2(ao)"f.

n=0
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By Lemmas 7.1 and 7.2, the sum on the right side converges uniformly in A
and it is equicontinuous for f € C2(G), Ifl| <1, A > 0.

We can now use a proof analogous to that of Theorem 4.1 (but using
weak rather than setwise convergence) together with Lemma 7.3 and the weak
convergence ji®(ap + 6a) => ji®(ao) to get the existence of i$(ao) in the
sense of weak convergence, and the few details are omitted. To get the ex-
istence of u®(ao) in the sense of weak convergence, use the representation
(7.2) and the a-differentiability of i®(a), E2 fOTA f(z2(s))ds at @ = ag, and
E2°r8 > 0. The details are like those of Theorem 4.2, but uses the equicon-
tinuity of {E2 [T" f(25(s))ds) (in f € C(G), A >0, [|f| < 1, & € Ao), the
weak convergence, and the uniform integrability of {72, small A > 0,a € Ag}.

Q.E.D.

Corollary. Assume the conditions of the Theorem. Then 5 (aq) ezists in
the sense of setwise convergence. Also {i%(ag), small A > 0} is of bounded

variation. For g € L®(G), there is a unique f € L®(G) suck that
(1= PA(ao)f =g - 3%

and f&20 =,
Proof. Let f € L®(G). Analogous to (4.9), write §P(a) = P3(aq + 6a) —
PB(ag), 6% (a) = ji®(ao + 6a) — i8(ap), and
5i%(a) . __ 8i%(0) 54
(7.1 < fa Jfo>=< -——6'&—,P (ao)f >

§PA(e)
ba

§P2(ap)

f>+ <6i(a), z
[s 4

+ < ji®(ao),

f>

By Lemma 7.3, (§P3(a)/6a)f converges to a continuous function, uniformly

in z € G. This and 6j1%(a) = zero measure implies that the last term on the
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right of (7.7) tends to zero, as éa — 0. Furthermore, since ji%(aq) exists in
the sense of weak convergence by the theorem. The second term on the right of
(7.7) tends to < 3® (o), P2 (a0)f >.

Since P2(ao)f is continuous (Lemma 7.1), and 2 (ag) exists in the sense
of weak convergence, the first term on the right tends to < i2(ao), P3(ag)f >.
Thus the limit of the left side of (7.7) exists. Now, the form of the limit of the
right side implies that 32 (ao) exists in the sense of setwise convergence.

Rewrite (7.7) as
< (o), (I = P2(a0)) f >=< i (ao), P4 (ag)f > .

For g € L=(G), set § = g — §*'*° and define

(o]

(7.8) £4 =) (PA(a0))"§

n=0
=§+ Z (P2 (a0))™(P*(a0)3)-

The sum converges uniformly in g, A, for || g ]|< 1, since {P?(ag)g,A > 0,9 €

L>=(G),|lgl] < 1} is equicontinuous by Lemma 7.1. The uniqueness assertion

follows.
Thus
(I - Pao))f* =3
and
< jig(@0),§ >=< jig(a0), g >=< i®(a0), P*(a0)f® >
The bounded variation assertion follows from this representation. Q.E.D.

The convergence Theorem for the discretizalions.




Theorem 7.3. Assume (A2.1)~(A2.5) and (A6.1). Then 12 (o) converges

setwise lo jiz(ap) and p2(ag) converges setwise to pq(ao).

Proof. Let f € L®(G). Let ¢® and g, resp., be the unique solutions in
L*(G) (Theorem 7.2, Lemma 4.4) to

(- PAac))g® = [ - foeo
(I = Blao)g = f - .
Note that
L (1%(2), ¢ ameo = (82(a0), 4°)
= (8 (o), PA(a0)g®) + (i (ac), P2 (a0)g™)-

Then we can write

(#8(ao), f) = (2 (axo), f ~ f220) =

(7.9) = (4 (o), (I = P2 (a0))g®)

- d a s
= /”A(d-raaO)E;E’gA(‘X?)Iazao'
We have

d .
—E2g% (X8|

. = E2g*(X$)Z5(r*, a0).

azao
Now, note that the sum in {7.6) converges uniformly in A (Lemma 7.2); hence
g2 — g, since P?(ag)"f — P(ao)”f. Using this, the weak convergence of
{X8,Z2(r2 ag)}, the uniform integrability of {Z2(7%,a0), A > 0}, the fact
that the functions on the right side of (7.9) converge uniformly in r € G to
the continuous limit, and the fact that i®(aq) = ji(aq) yields that the limit as

A — 0 of the right side of (7.9) is
- - " d =
[tz 0B o(f0)2(r.00) = [ itdn,a0) 1L B9, oy, =
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= {(fa(ao), (I = P(a0))g) = (falao), f — F*°) = (Ba(a0), f)-
Thus
(52 (a0), f) = {fia(a0), f)

which yields the setwise convergence of i3 (ao) to fia( o). The setwise conver-
gence of u®(ao) to p(ag) follows from the representation (7.2). For example
to get the limit of the derivative of the denominator of (7.2), note that the

derivative of the denominator is

- . d
JL itz coEzer® + [ e 00 B o,
Then use the representation

d

2 ra.d
daE’T

= E2rZ8(r%, ag),
a=ap

and the proved convergence and uniform integrability (where appropriate) re-

sults for 32 (ap), X2(:),7%,Z%(7%, a0). Q.E.D.

A finite time approrimation Theorem. The next result shows that the deriva-
tive (a(ag), f) of the ergodic cost can be arbitrarily well approximated by
f;E;’f(rA(t))[amo for large t and small A. It is such approximations that are
actually used in the applications. It is important to note that for large enough

¢, the quality of the appr.nimation is uniformly good in (small) A.

Theorem 7.4. Assume (A2.1)-(A2.5), (A6.1). Then for f € L¥(R"),

(/-‘0(00)) f) = ilﬂlo(“(e(OO)vf)

d
(7.10) = Jim /pA(d:c,ao)-d—a-E;’f(rA(t))L:ao,

t—e00

where the limits as A — 0, t — 0o can be taken in any way at all.
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Proof. Write, by the invariance of u®(a) and the differentiability:

2 1(@), Domas = (12 (00), P(an, 1)

(7.11) + (1®(@0), P2 (a0, 1)),

where P2(ao,t)f(z) = E2°f(z2(t)) and t > 0. We have P?(ao,t)f — f° =
< p(ag),f > as A —0,t— oco. Also, {u3(ag), A > 0} is of bounded variation
by the corollary to Theorem 7.2. Thus (u2(ap), P4(ao,t)f) — 0as A — 0 and

t — oc, which yields the theorem. Q.E.D.

A pathwise result. With the approximation of Theorem 7.4 in hand, we can
give the pathwise result. Since we only have one long realization and cannot
explicitly calculate the derivatives of the expectations, we need to show that a
long simulation of {X2, n < oo} can yield a good approximation to the right
side of (7.10) for fixed A. Typically, the ¢ in Theorem 7.5 is as large as can be,

consistent with a modest sample variance.

Theorem 7.5. Assume (A2.1)-(A2.5) and (A6.1). Fizt = nA. Let f(-} be
bounded and continuous. Then as T — oo (or with centered f used as discussed

in Section 5)

1 T
7 [ 2500+ s,00) = 2(s,c0)l (=2 00 + )

(7.12) L4 / 4B (dz, a0) E20 Z2(fo, a0) f(z (1))

d
= (u®(a0), EEE"f(IA(io))la_._m,Y
Proof. Fixty. Define §Z2(ty,8) = ZA(to+s, ap)—2%(s,a0) and Y8 (15, s) =

6Z%(to,8)f(z%(to + 5)). Then the process (parameter T') defined by

T
MA(T)=/ [YA(to,s)—E:’g(‘)}’A(to,s)]ds
0
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is a zero mean martingale whose variance is O(T"). Thus Kronecker’s Lemma im-
plies that M2(T)/T — 0 w.p.1. This implies that for the purpose of evaluating

the limit of the left side of (7.12), we can replace it by
1 T
(7.13) 7 [ o=,
T Jo
where we define
d
g(z%(s)) = Ef2 )Y 2(to,8) = 2o Eeace) F(2%(to + ) amay-

The function ¢(-) is continuous and bounded. Then, the ergodic properties of
{X2, n < 0o} imply that (as T — o00) (7.13) converges w.p.1. to its mean value

(4® (o), g) which is just the center term of (7.12). Q.E.D.
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8. Numerical Comparisons.

The approximation method of Section 7 has been simulated and compared
with alternative methods on a variety of problems of dimension up to seven.
Here, we comment on some comparisons with a finite difference method. The
alternative methods are all described and discussed in [1], and we will repeat
only a few of the comments made there.

The basic method used for all methods takes one long simulation, over an
interval 7. A basic estimation interval Ty is given, and the approximate model
X48(.)is simulated. N = T} /T; estimates of the derivative are made in the long
simulation interval, each using T, units of time. Let X2 denote the state of
the system at the start of the n*?subinterval. Then X2 is the initial condition
for the estimate on the (n + 1)** subinterval. The detailed results reported here
are for a two dimensional problem, with the parameter o being a scalar. We
comment on larger problems later. For the finite difference estimate, a pair of
simulations must be taken, with a parameter set at ag + éa, for some small éo.
The samples of the éw in (5.1) for the second member of the pair was the same
as that of the first member of the pair, with the samples being independent from
pair to pair. This reduced the variance over what would have been the case if
all the samples of the 6w random variables has been mutually independent, as
in [1]. The reduction was particularly large if the system was linear, and the
cost function smooth, although there was a noticeable reduction in the variance

in all cases tested.
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The two dimensional problem was the noise driven Van der Pol equation

dz) = zodt

dz; = [1025(1 - 23) — az,]dt + dw,

where ag = 2. Note that this system is degenerate. Nevertheless the method

works well. The cost function of interest was

s
/o k(z(s))ds/S

for large S, where
k(2) = Ijjza203)-

The simplest estimator is
6 B3k [ 2 00) - 250 eok(X ().
N = To Jur, ’ ’

An “antithetic” variable method was always used since it gives a reduced vari-
ance: Let N be an even number, and let the §w samples used for the 2n’th
estimate be the negative of that used for the 2n — 1’th (n = 1,2, .. ) estimate,
with the 6w used for the 2n — 1'th estimates (n = 1,2, - -+, N/2) being mutually
independent.

The centered form, where k(X2(s)) is replaced by the centered k(X 2(s)) —
kE(nT, + To), where the centering is a sample estimate of the value of the cost
at the cited time, actually gave better resuits. This method is referred to as the

AC-method in the tables below (antithetic variable, centered). The centering is

zero mean, but helps reduce the variance. As n — o0, (8.1) converges to

.dd_a /#(dz, a0) EZ°k(X 2 (To)).
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For large enough Ty, this is a good estimate of the desired derivative. A better
procedure would be to divide the interval [0,75] into a reasonable number of
subintervals to get a better approximation to the first centered form discussed
in Section 5. But one must keep in mind that the CPU time required for a large
number of subdivisions might be better used for taking more samples.

A third method, called the weighted AC-method, often (but not always) was
advantageous. As s — oo, the variance of [Z2(s, ag) — Z2(nTp,ap)] goes to
oo. If the system has a “short” memory, then the “earlier” part of the Z2(-)
process contributes little to the estimate in the following sense: Let nTy + Ty >

s > 59 > nTy, and write
[ZA(S, Qo) - ZA(nTo, ao)]k(XA(s)) =
(22 (s, @0) = Z%(s0, ao) ]k (X2 (5))+
[Z%(s0,@0) — Z®(nTo, ao)]k(X 2 (5)).
Then the mean value of the second term goes to zero as s — so — oco. But,
if we reduce the sample interval, then a bias is added. In order to balance
the opposing effects, we use a weighted substitute Z4 for Z2, constructed as

follows, where A € (0,1) is a weighing factor or exponential discount of the past:

(notation for the non-degenerate case);

Z3((n +1)A) = [0~ (X2, a0)ba (X2, a0)] 6w(iA) = AZ2(nA).

)

For the problem reported on here, this method gave excellent results. In other
cases, where the “approach to ergodicity” is slower, a substantial bias could be
introduced into the estimates.

Refer to the tables, where the sample means of the derivative estimates,

their sample standard deviations, and the required CPU time are given. For
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the finite difference estimates, N=2,500 was used, and N=5,000 otherwise. This
is because two system simulations per finite difference estimate are needed, and
only one for our method. But the important quantity is the sample standard
deviation per CPU time unit. Note that the sample standard deviation for the
weighted AC-method decreases as T increases, while that for the AC method
increases. We can readily see the advantages of the methods introduced here.
For linear systems, the finite difference method seems to work better owing to
the ‘smoothness’ of the dependence of the estimates on the noise, and the value
of the difference interval was not too important (did not seriously affect the
sample variance), as long as it was small enough to control the bias.

There are important dimensionality advantages to our methods. Suppose
that the dimension of the parameter is m. Then, in order to get a single estimate
of a gradient, a finite differecnce method needs to simulate the system either
(m+1) or 2m times, depending on the finite difference method used (one sided
or central). Our method requires the simulation of only one sample path per
estimate, and the calculation of one Z -variable per component of the parameter.
But, the calculation of the Z-variable is usually much simpler than doing a
simulation of the system. This is particularly true if the system is of high
dimension, or if the dynamical terms are hard to compute. Thus, our methods
do require much less computer time than does the finite difference method,
particularly for high dimensional and nonlinear problems. Alternative methods,
such as the finite difference method, can compensate for this only by having a
better quality estimate; i.e., one with smaller bias or sample variance.

We emphasize that no general rule has been found which can tell us which

method would be preferable for any particular class of problems. All methods
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must be taken as serious candidates, and techniques sought for their realization

so that they perform as well as possible.
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To =3

Finite Difference (6a = .05)

sample mean sample standard deviation
derivative 168 .247
cost .363 149
CPU Time 32.04

AC

sample mean sample standard deviation
derivative 164 216
cost 364 127
CPU Time 18.9

Weighted AC (Derivative only)

sample mean sample standard deviation
A
1 .160 19
5 153 14
CPU Time 20.1
TABLE 1
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I, =10

Finite Difference (6o = .05)

sample mean sample standard deviation
derivative 157 243
cost .364 .052
CPU Time 104.8

AC

sample mean sample standard deviation
derivative 162 304
cost .364 .032
CPU Time 65.5

Weighted AC (Derivative only)

sample mean sample standard deviation
A=.5 157 .106
A=1 150 .07
CPU Time 68.3
TABLE 2
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Tp =20

Finite Difference (6a = .05)

sample mean sample standard deviation
derivative .168 .246
cost .365 .032
CPU Time 209.8

AC

sample mean sample standard deviation
derivative .168 537
cost .365 .021
CPU Time 65.5

Weighted AC (Derivative only)

sample mean sample standard deviation
A=.5 154 .058
A=1 .163 101
CPU Time 137.05
TABLE 3
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